-->

Dumpty down from the wall before disaster strikes

Dumpty down from the wall before disaster strikes. This will require a shift in a few daily habits. If the thought of going on a low-carb diet is terrifying (you’re already biting your nails at the thought of nixing all the delicious foods you’ve come to love), don’t give up yet. I promise to make this as easy as possible. I might take away the bread basket, but I’ll replace it with other things you might have avoided under the false idea that they were somehow bad for you, such as butter, meat, cheese, and eggs, as well as an abundance of wonderfully healthful vegetables. The best news of all is that as soon as you shift your body’s metabolism from relying on carbs to relying on fat and protein, you’ll find a lot of desirable goals easier to achieve, such as losing weight effortlessly and permanently, gaining more energy throughout the day, sleeping better, being more creative and productive, having a sharper memory and faster brain, and enjoying a better sex life. This, of course, is in addition to safeguarding your brain. INFLAMMATION GETS CEREBRAL Let’s get back to this idea of inflammation, which I’ve mentioned a few times in this chapter without a full explanation. Everyone has a rough idea what is meant by the term “inflammation” in a very general sense. Whether it’s the redness that quickly appears after an insect bite or the chronic soreness of an arthritic joint, most of us understand that when there is some kind of stress in the body, our body’s natural response is to create swelling and pain, hallmarks of the inflammatory process. But inflammation isn’t always a negative reaction. It can also serve as an indication that the body is trying to defend itself against something it believes to be potentially harmful. Whether to neutralize the insect’s toxins or reduce movement in a sprained ankle to allow healing, inflammation is vital to our survival. Problems arise, however, when inflammation gets out of control. Just as one glass of wine a day is healthy but multiple glasses every day can lead to health risks, the same holds true for inflammation. Inflammation is meant to be a spot treatment. It’s not supposed to be turned on for prolonged periods of time, and never forever. But that’s what’s happening in millions of people. If the body is constantly under assault by exposure to irritants, the inflammation response stays on. And it spreads to every part of the body through the bloodstream; hence, we have the ability to detect this kind of widespread inflammation through blood tests. When inflammation goes awry, a variety of chemicals are produced that are directly toxic to our cells. This leads to a reduction of cellular function followed by cellular destruction. Unbridled inflammation is rampant in Western cultures, with leading scientific research showing that it is a fundamental cause of the morbidity and mortality associated with coronary artery disease, cancer, diabetes, Alzheimer’s disease, and virtually every other chronic disease you can imagine. It’s not much of a stretch to appreciate how unchecked inflammation would underlie a problem like arthritis, for example. After all, the common drugs used to treat the condition, such as ibuprofen and aspirin, are marketed as “anti-inflammatories.” With asthma, antihistamines are used to combat the inflammatory reaction that occurs when someone is exposed to an irritant that elicits an allergic response. These days, more and more people are beginning to understand that coronary artery disease, a leading cause of heart attacks, may actually have more to do with inflammation than it does with high cholesterol. This explains why aspirin, in addition to its blood-thinning properties, is useful in reducing risk not only for heart attacks but also for strokes. But the connection of inflammation to brain diseases, although well described in the scientific literature, seems somehow difficult to embrace—and it’s largely unknown by the public. Perhaps one reason people can’t seem to envision “brain inflammation” as being involved in everything from Parkinson’s disease to multiple sclerosis, epilepsy, autism, Alzheimer’s disease, and depression is that unlike the rest of the body, the brain has no pain receptors, so we can’t feel inflammation in the brain. Focusing on reducing inflammation might seem out of place in a discussion of enhancing brain health and function. But while we are all familiar with inflammation as it relates to such disease states as arthritis and asthma, the past decade has produced an extensive body of research clearly pointing the finger of causality at inflammation when considering a variety of neurodegenerative conditions. In fact, studies dating back as far as the 1990s show that people who have taken nonsteroidal antiinflammatory medications such as Advil (ibuprofen) and Aleve (naproxen) for two or more years may have more than a 40 percent reduced risk for Alzheimer’s and Parkinson’s disease. 14, 15 At the same time, other studies have clearly shown dramatic elevation of cytokines, the cellular mediators of inflammation, in the brains of individuals suffering from these and other degenerative brain disorders. 16 Today, new imaging technology is finally allowing us to see cells actively involved in producing inflammatory cytokines in the brains of Alzheimer’s patients. So, we now are forced to regard inflammation in a whole new light. Far more than just the cause of your painful knee and sore joints, it underpins the very process of brain degeneration. Ultimately, the key downstream effect of inflammation in the brain that is responsible for the damage is activation of chemical pathways that increase free radical production. At the center of chronic inflammation is the concept of oxidative stress—a biological type of “rusting.” This gradual corrosion happens on all tissues. It’s a normal part of life; it occurs everywhere in nature, including when our bodies turn calories (energy) from food and oxygen from the air into usable energy. But when it begins to run rampant, or when the body can’t keep it under healthy control, it can become deadly. Although the word oxidation implies oxygen, it’s not the kind we breathe. The felon here is simply O because it’s not paired with another oxygen molecule (O2 ). Let me take you one step further in describing the oxidation process. Most of us have heard about free radicals by now. These are molecules that have lost an electron. Normally, electrons are found in pairs, but forces such as stress, pollution, chemicals, toxic dietary triggers, ultraviolet sunlight, and ordinary body activities can “free” an electron from a molecule such that it loses its social graces and starts trying to steal electrons from other molecules. This disorder is the oxidation process itself, a chain of events that creates more free radicals and stirs inflammation. Because oxidized tissues and cells don’t function normally, the process can render you vulnerable to a slew of health challenges. This helps explain why people with high levels of oxidation, which is often reflected by high levels of inflammation, have an extensive list of health challenges and symptoms ranging from a low resistance to infection to joint pain, digestive disorders, anxiety, headaches, depression, and allergies. And, as you probably can guess, reduced oxidation lowers inflammation, which in turn helps limit oxidation. Antioxidants are important for this very reason. These nutrients, such as vitamins A, C, and E, donate electrons to free radicals, and this interrupts the chain reaction and helps prevent damage. Historically, antioxidant-rich foods such as plants, berries, and nuts were part of our diet, but the food industry today processes a lot of nutrients out of our diets that are sorely needed for optimal health and energy metabolism. Later in this book I’m going to show you how to turn on a particular pathway in your body that not only directly reduces free radicals naturally, but also protects the brain by reducing excess free radicals produced by inflammation. Interventions designed to reduce inflammation using natural substances like turmeric have been described in medical literature dating back more than two thousand years, but it is only in the past decade that we have begun to understand this intricate and eloquent biochemistry. Another upshot of this biological pathway is the activation of specific genes that code for the production of enzymes and other chemicals that serve to break down and eliminate various toxins to which we are exposed. One might wonder why human DNA would contain codes for the production of detoxification chemicals, because we tend to assume that our first real exposure to toxins began with the industrial era. But humans (and, in fact, all living things) have been exposed to a variety of toxins for as long as there has been life on the planet. Aside from toxins that naturally exist in our external environment, like lead, arsenic, and aluminum, as well as powerful toxins created as a form of protection by variously consumed plants and animals, our bodies produce toxins internally during the normal processes of metabolism. So these detoxification genes—now needed more than ever—have gratefully served us for a very long time. And we are just beginning to understand how natural substances you can buy at your local grocery store, such as turmeric and the omega-3 docosahexaenoic acid (DHA), can act as powerful detoxification agents by enhancing genetic expression. It is not just what we eat that can change the expression of our genes and, therefore, help us manage inflammation. You’re going to learn about the latest studies demonstrating the ways exercise and sleep come into play, as these are important regulators (read: remote controllers) of our DNA. What’s more, you’ll learn how to grow new brain cells; I’m going to show you how and why neurogenesis—the birth of new brain cells—is under your control. THE CRUEL IRONY: STATINS Diet and exercise can boost our body’s natural methods to manage inflammation, but is there also a case for drugs? Far from it. Ironically, cholesterol-lowering statins, which are among the most commonly prescribed drugs (e.g., Lipitor, Crestor, Zocor), are now being touted as a way to reduce overall levels of inflammation. But new research also reveals that statins may lessen brain function and increase risk for heart disease. The reason is simple: The brain needs cholesterol to thrive, a point I’ve already made but will repeat to make sure you don’t forget it. Cholesterol is a critical brain nutrient essential for the function of neurons, and it plays a fundamental role as a building block of the cell membrane. It acts as an antioxidant and a precursor to important brain-supporting elements like vitamin D, as well as the steroid-related hormones (e.g., sex hormones such as testosterone and estrogen). Most important, cholesterol is looked upon as an essential fuel for the neurons. Neurons themselves are unable to generate significant cholesterol; instead, they rely on delivery of cholesterol from the bloodstream via a specific carrier protein. Interestingly, this carrier protein, LDL, has been given the derogatory title of “bad cholesterol.” In reality, LDL is not a cholesterol molecule at all, good or bad. It’s a low-density lipoprotein (hence its acronym), and there is absolutely nothing bad about it. The fundamental role of LDL in the brain, again, is to capture life-giving cholesterol and transport it to the neuron, where it performs critically important functions. And now we have the evidence in the scientific literature to prove that when cholesterol levels are low, the brain simply doesn’t work well; individuals with low cholesterol are at much greater risk for dementia and other neurological problems. We need to change our attitudes about cholesterol and even LDL; they are our friends, not foes. But what about cholesterol and coronary artery disease? I’m going to tackle that very conundrum in chapter 3. For now, I want to implant in your brain the idea that cholesterol is good. You’ll soon see that we’ve been barking up the wrong tree—blaming cholesterol, and LDL especially, when coronary artery disease has more to do with oxidized LDL. And how does LDL become so damaged that it’s no longer able to deliver cholesterol to the brain? One of the most common ways is through physical modification by glucose. Sugar molecules attach themselves to LDL and change the molecule’s shape, rendering it less useful while increasing free radical production. If what I just described to you raced past your head, don’t panic. I’m going to take you by the hand through all of these biological events in the upcoming chapters. I’ve broadly touched upon a lot of issues in this chapter as a prelude to the balance of the book, which will take you deeper into the story of Grain Brain. The chief questions I want you to think about are: Have we accelerated our brain’s decline by following a low-fat, high-carb diet with fruit on the side? Can we really control the fate of our brains through lifestyle alone despite the DNA we’ve inherited? Is there too much invested interest in Big Pharma to consider the fact we can naturally prevent, treat, and sometimes cure— without drugs—a spectrum of brain-based ailments such as ADHD, depression, anxiety, insomnia, autism, Tourette’s syndrome, headaches, and Alzheimer’s disease? The answer to all three of these questions is a resounding yes. I’ll go even further and suggest we can prevent heart disease and diabetes, too. The current model of “treatment” for these maladies pays too much attention to the symptomatic smoke and ignores the smoldering fire. Such an approach is ineffective and unsustainable. If we’re ever going to push the boundaries of human longevity, live long past 100 years old, and really have something amazing to report to our prehistoric ancestors, then we’re going to have to change our whole MO. The goal of this chapter was to explain the story of inflammation and introduce you to a new way of thinking—and looking—at your brain (and body). We take it for granted that the sun rises in the east every morning and sets in the west at night. The next day, the sun does the same thing again. But what if I told you that the sun isn’t moving at all? It’s us who are spinning and moving around the sun! I trust you already knew that, but the takeaway from the analogy is that we tend to get mentally wedded to ideas that are no longer valid. After lectures, people frequently approach me to say thanks for thinking outside the box. With all due respect, that’s not the point. It does the world no good for me to be seen as someone whose ideas are “outside the box.” My mission is to make the box bigger so that these concepts are part of our culture and way of living. Only then will we be able to make serious, meaningful headway with our modern afflictions. FROM BRAIN HEALTH TO TOTAL HEALTH The inescapable fact is that we have evolved into a species that requires fat for life and health. The massive amounts of carbs we eat today are fueling a silent firestorm in our bodies and brains. And I’m not just talking about the manufactured, refined stuff that we all know is not going to win prizes for us at the doctor’s office (much less on the scale). I love how Dr. William Davis puts it in his seminal work Wheat Belly: 17 Whether it’s a loaf of organic high-fiber multigrain bread or a Twinkie, what exactly are you eating? We all know that the Twinkie is just a processed indulgence, but conventional advice tells us that the former is a better health choice, a source of fiber and B vitamins, and rich in “complex” carbohydrates. Ah, but there’s always another layer to the story. Let’s peer inside the story. Let’s peer inside the contents of this grain and try to understand why—regardless of shape, color, fiber content, organic or not—it potentially does odd things to humans

Dumpty down from the wall before disaster strikes

No comments:

مساحة إعلانية
مساحة إعلانية

نموذج الاتصال

Name

Email *

Message *