-->

Below

Below is a list of symptoms and illnesses associated with gluten sensitivity. Even if you don’t have any of these conditions, I urge you to employ the latest testing technology (here). ADHD alcoholism ALS anxiety ataxia, loss of balance autism autoimmune disorders (diabetes, Hashimoto’s thyroiditis, rheumatoid arthritis, to name a few) bone pain/osteopenia/osteoporosis brain fog cancer chest pain constantly getting sick dairy intolerance delayed growth depression digestive disturbances (gas, bloating, diarrhea, constipation, cramping, etc.) heart disease hives/rashes infertility irritable bowel syndrome malabsorption of food migraines miscarriages nausea/vomiting neurological disorders (dementia, Alzheimer’s, schizophrenia, etc.) parkinsonism seizures/epilepsy sugar cravings THE GLUTEN POLICE 21 The following grains and starches contain gluten: barley bulgur couscous farina graham flour kamut matzo rye semolina spelt triticale wheat wheat germ The following grains and starches are gluten-free: amaranth arrowroot buckwheat corn millet potato quinoa rice sorghum soy tapioca teff The following foods often contain gluten: baked beans (canned) beer blue cheeses bouillons/broths (commercially prepared) breaded foods cereals chocolate milk (commercially prepared) cold cuts communion wafers egg substitute energy bars flavored coffees and teas French fries (often dusted with flour before freezing) fried vegetables/tempura fruit fillings and puddings gravy hot dogs ice cream imitation crabmeat, bacon, etc. instant hot drinks ketchup malt/malt flavoring malt vinegar marinades mayonnaise meatballs/meatloaf non-dairy creamer oat bran (unless certified gluten-free) oats (unless certified gluten-free) processed cheese (e.g., Velveeta) roasted nuts root beer salad dressings sausage seitan soups soy sauce and teriyaki sauces syrups tabbouleh trail mix veggie burgers vodka wheatgrass wine coolers The following are miscellaneous sources of gluten: cosmetics lipsticks/lip balm medications non-self-adhesive stamps and envelopes Play-Doh shampoos/conditioners vitamins and supplements (check label) The following ingredients are often code for gluten: amino peptide complex Avena sativa brown rice syrup caramel color (frequently made from barley) cyclodextrin dextrin fermented grain extract Hordeum distichon Hordeum vulgare hydrolysate hydrolyzed malt extract hydrolyzed vegetable protein maltodextrin modified food starch natural flavoring phytosphingosine extract Secale cereale soy protein tocopherol/vitamin E Triticum aestivum Triticum vulgare vegetable protein (HVP) yeast extract CHAPTER 3 Attention, Carboholics and Fat Phobics Surprising Truths About Your Brain’s Real Enemies and Lovers No diet will remove all the fat from your body because the brain is entirely fat. Without a brain, you might look good, but all you could do is run for public office. —GEORGE BERNARD SHAW SOME OF MY MOST REMARKABLE CASE STUDIES involve people transforming their lives and health through the total elimination of gluten from their diets and a new appreciation for fats instead of carbs. I’ve watched this single dietary shift lift depression, relieve chronic fatigue, reverse type 2 diabetes, extinguish obsessive-compulsive behavior, and cure many neurological challenges, from brain fog to bipolar disorder. But apart from gluten, there’s much more to the story of carbohydrates in general and their impact on brain health. Gluten isn’t the only villain. To shift your body’s biochemistry to one that burns fat (including the kind that “never goes away”), tames inflammation, and prevents illness and mental dysfunction, you need to factor in another big piece of the equation: carbs versus fats. In this chapter, I’ll take you on a tour of why an extremely low-carb and high-fat diet is what your body fundamentally craves and needs. I’ll also explain why consuming excess carbohydrates—even those that don’t contain gluten—can be just as harmful as eating a gluten-laden diet. Ironically, ever since we “scientized” nutrition, the state of our health has declined. Decisions about what to eat and drink have gone from habits of culture and heritage to calculated choices based on shortsighted nutritional theories, with little consideration of how human beings reached modernity in the first place. And we can’t forget about all the commercial interest out there. Do you think the makers of high-carbohydrate breakfast cereals (read: the entire aisle in your grocery store devoted to boxed cereals) truly have your health in mind? One of the most profitable businesses for food manufacturers is cereal. It’s one of the only industries that can turn an inexpensive ingredient (i.e., processed grains) into a pricey commodity. The R&D department for General Mills, called the Institute of Cereal Technology and located in Minneapolis, is home to hundreds of scientists whose sole purpose is to design new and tasty cereals that can command a high price and last for a long time on the shelves. 1 Consider what you’ve experienced in just the past few decades. You’ve witnessed an untold number of ideas on what you should consume to fuel your metabolism, only to learn the opposite could be true. Take eggs, for instance. Eggs were thought to be good for you; then they were deemed to be bad for you because of their saturated fat content; and then you were exceedingly confused by messages implying that “More evidence is needed to determine the health effect of eggs.” It’s unfair, I know. With all of this white noise, it’s no wonder that people feel endlessly frustrated. This chapter should make you rejoice. I’m going to rescue you from a lifetime of trying to avoid eating fat and cholesterol and prove how these delicious ingredients preserve the highest functioning of your brain. We’ve developed a taste for fat for good reason: It’s our brain’s secret love. But in the last several decades it’s been demonized as an unhealthy nutritional source, and we’ve regrettably become a fat-phobic, carb-addicted society (and it doesn’t help that we automatically lower our intake of healthy fat when we eat lots of carbs). Advertisements, weight-loss companies, grocery stores, and popular books are touting the idea that we should be on a low-fat or as close to a no-fat, lowcholesterol diet as humanly possible. True, there are certain types of fat that are associated with health issues, and no one can deny the health threat linked squarely with commercially modified fats and oils. There is compelling scientific support that “trans fats” are toxic and are clearly linked to any number of chronic diseases. But the missing message is simple: Our bodies thrive when given “good fats,” and cholesterol is one of these. And we don’t do so well with copious amounts of carbohydrates, even if those carbs are gluten-free, whole grain, and high in fiber. Interestingly, the human dietary requirement for carbohydrate is virtually zero; we can survive on a minimal amount of carbohydrate, which can be furnished by the liver as needed. But we can’t go long without fat. Unfortunately, most of us equate the idea of eating fat to being fat, when in reality, obesity—and its metabolic consequences—has almost nothing to do with dietary fat consumption and everything to do with our addiction to carbs. The same is true about cholesterol: Eating highcholesterol foods has no impact on our actual cholesterol levels, and the alleged correlation between higher cholesterol and higher cardiac risk is an absolute fallacy. FAT GENES AND PHAT SCIENCE Of all the lessons in this book, the one I hope you take seriously is the following: Respect your genome. Fat—not carbohydrate—is the preferred fuel of human metabolism and has been for all of human evolution. We have consumed a high-fat diet for the past two million years, and it is only since the advent of agriculture about ten thousand years ago that carbohydrates have become abundant in our food supply. We still have a hunter-gatherer genome; it’s thrifty in the sense that it’s programmed to make us fat during times of abundance. The thrifty gene hypothesis was first described by geneticist James Neel in 1962 to help explain why type 2 diabetes has such a strong genetic basis and results in such negative effects favored by natural selection. According to the theory, the genes that predispose someone to diabetes—“thrifty genes”—were historically advantageous. They helped one fatten up quickly when food was available, since long stretches of food scarcity were inevitable. But once modern society changed our access to food, the thrifty genes were no longer needed but were still active—essentially preparing us for a famine that never comes. It is believed that our thrifty genes are responsible for the obesity epidemic, too, which is closely tied to diabetes. Unfortunately, it takes forty thousand to seventy thousand years for any significant changes to take place in the genome that might allow us to adapt to such a drastic change in our diet and for our thrifty genes to even think about ignoring the instructions that say “store fat.” While some of us like to believe we’re plagued with genes that promote fat growth and retention, thus making weight loss and maintenance hard, the truth is we all carry the “fat gene.” It’s part of our human constitution and, for the majority of our existence on the planet, has kept us alive. Our forebears could not have had any meaningful exposure to carbohydrates, except perhaps in the late summer when fruit ripened. Interestingly, this type of carbohydrate would have tended to increase fat creation and deposition so we could get through the winter when food and calories were less available. Now, however, we signal our bodies to store fat 365 days a year. And through science we are learning about the consequences. The Framingham Heart Study referenced in the first chapter, which identified a linear association between total cholesterol and cognitive performance, is just the tip of the iceberg. In the fall of 2012, a report in the Journal of Alzheimer’s Disease published research from the Mayo Clinic revealing that older people who fill their plates with carbohydrates have nearly four times the risk of developing mild cognitive impairment (MCI), generally considered a precursor to Alzheimer’s disease. Signs of MCI include problems with memory, language, thinking, and judgment. This particular study found that those whose diets were highest in healthy fats were 42 percent less likely to experience cognitive impairment; people who had the highest intake of protein from healthy sources like chicken, meat, and fish enjoyed a reduced risk of 21 percent. 2 Earlier studies examining patterns in diet and risk for dementia unveiled similar findings. One of the first studies to really compare the difference in fat content between an Alzheimer’s brain and a healthy brain was published in 1998. 3 In this post-mortem study, researchers in the Netherlands found that the Alzheimer’s patients had significantly reduced amounts of fats, notably cholesterol and free fatty acids, in their cerebrospinal fluid than did the controls. This was true regardless of whether the Alzheimer’s patients had the defective gene—known as APoE ε4—that predisposes people to the disease. In 2007, the journal Neurology published a study that looked at more than eight thousand participants who were sixty-five years or older and had totally normal brain function. The study followed them for up to four years, during which some 280 people developed a form of dementia (most of the 280 were diagnosed with Alzheimer’s). 4 The researchers aimed to identify patterns in their dietary habits, homing in on their consumption of fish, which contains lots of brain- and hearthealthy omega-3 fats. For people who never consumed fish, the risk of dementia and Alzheimer’s disease during the four-year follow-up period was increased by 37 percent. In those individuals who consumed fish on a daily basis, risk for these diseases was reduced by 44 percent. Regular users of butter had no significant change in their risk for dementia or Alzheimer’s, but people who regularly consumed omega-3-rich oils, such as olive, flaxseed, and walnut oil, were 60 percent less likely to develop dementia than those who did not regularly consume such oils. The researchers also found that people who regularly ate omega-6-rich oils—typical in the American diet—but not omega-3-rich oils or fish were twice as likely to develop dementia as people who didn’t eat omega-6-rich oils. (See the sidebar below for a more in-depth explanation of these fats.) Interestingly, the report showed that consumption of omega-3 oils actually counterbalanced the detrimental effect of the omega-6 oils, and cautioned against eating omega-6 oils in the absence of omega-3. I find results like these to be quite stunning, and informative. THE OH-SO-MANY OMEGAS: WHICH ONES ARE GOOD? We hear so much these days about omega-3 and omega-6 fats. Overall, omega-6 fats fall under the “bad fat” category; they are somewhat pro-inflammatory, and there is evidence that higher consumption of these fats is related to brain disorders. Unfortunately, the American diet is extremely high in omega-6 fats, which are found in many vegetable oils, including safflower oil, corn oil, canola oil, sunflower oil, and soybean oil; vegetable oil represents the number one source of fat in the American diet. According to anthropological research, our hunter-gatherer ancestors consumed omega-6 and omega-3 fats in a ratio of roughly 1:1. 5 Today we consume ten to twenty-five times more omega-6 fats than evolutionary norms, and we’ve dramatically reduced our intake of healthy, brain-boosting omega-3 fats (some experts believe our increased consumption of brain-healthy omega-3 fatty acids was responsible for the threefold increase in the size of the human brain). The following chart lists the omega-6 and omega-3 content of various vegetable oils. Oil Omega-6 Content Omega-3 Content canola 20% 9% corn 54% 0% cottonseed 50% 0% fish 0% 100% flaxseed 14% 57% peanut 32% 0% safflower 75% 0% sesame 42% 0% soybean 51% 7% sunflower 65% 0% walnut 52% 10% Seafood is a wonderful source of omega-3 fatty acids, and even wild meat like beef, lamb, venison, and buffalo contain this fab fat. But a caveat to consider: If animals are fed grains (usually corn and soybeans), then they will not have adequate omega-3 in their diets and their meat will be deficient in these vital nutrients. Hence the call for consuming grassfed beef and wild fish.

Below

No comments:

مساحة إعلانية
مساحة إعلانية

نموذج الاتصال

Name

Email *

Message *